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Abstract: Exponentially weighted moving average control charts and neural net-
works were used for oestrus detection in dairy cows. The analysis involved 373 
cows, each with one verified oestrus event. Model inputs were the traits activity, 
measured by pedometer, and the period (days) since last oestrus. In total 10,386 re-
cords were available, which were partitioned into training and validation subsets to 
train and test the neural network (multifold cross-validation). When the trained 
neural network was applied to the validation sets, the averaged sensitivity, speci-
ficity and error rate were 77.5, 99.6 and 9.1%, respectively. Performance for the 
same data with the univariate control chart was less successful. Neural networks 
are useful tools to improve computerised oestrus detection in dairy cows.  

1 Introduction 

Modern dairy farming is generally characterised by extended herd sizes and narrowed 
income margins per unit of output. In consequence, the economic results become more 
and more sensitive to minor changes in farm performance. Reproductive efficiency, e.g. 
oestrus detection, rebreeding and calving interval, has a strong impact on farmers’ in-
come. In order to improve oestrus detection, multivariate analyses with activity, milk 
yield, milk temperature, electrical conductivity and flow-rate were performed [DW01]. 
But none of the presented combinations showed an appreciable improvement in error 
rate. [Fi03] combined the trait activity and the period since last oestrus into a fuzzy logic 
model and observed a strong reduction in the number of false positive warnings. 

The first objective of the present study was to develop a neural network model to clas-
sify oestrus alerts. The second objective of this research was to compare the classifica-
tion performance of the neural network with more conventional methods from statistical 
quality control, i.e. control charts. 

 133

mailto:jkrieter@tierzucht.uni-kiel.de
mailto:wjunge@tierzucht.uni-kiel.de


2 Material and Methods 

2.1 Material 

The collection of data was performed on a commercial dairy farm in 1998. During this 
period 373 inseminations were verified as oestrus cases by a following calving. For 
oestrus detection time series consisting of 15 days before oestrus, the day of oestrus and 
15 days after oestrus were analysed. The trait activity was measured by conventional 
pedometers, which were attached to the left foreleg of each cow. The pedometers were 
recorded at the entrance of the rotary milking parlour. The activity values for further 
analyses were calculated from the difference between two successive pedometer read-
ings, divided by the period of time between these readings. The parameter “period since 
last oestrus” included information about previous inseminations and previous oestrus 
cases. For each day considered in the analyses the period since last oestrus was calcu-
lated from the difference of the actual day and the day of previous information. Most 
observations accumulated around the mean oestrus cycle length of 21 days. A smaller 
accumulation occurred for a period of doubled oestrus cycle length.  

2.1 Methods 

Exponentially weighted moving-average control chart (EWMA) 

A control chart is a simple time plot of a sequence of observations or subgroups statis-
tics. The observations in the plot are compared to upper and lower control limits deter-
mining the range of variation due to common causes. If the process is in-control, nearly 
all observations fall between the control limits. A point outside of the control limits 
indicates an out-of-control signal, so more variation exits than can be attributed to the 
effect of common causes of variation (e.g. oestrus alert). In the present investigation, an 
EWMA control chart was used because it is flexible, easy to set up and operate. The 
EWMA is defined as 
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where  and  denotes the EWMA statistic at time t, usually  is set 
equal to a target value [Mo97]. The parameter λ is a constant satisfying 
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10 ≤< λ . The 
choice of λ determines the decline of the weights and therefore the memory of the chart. 
If 1→λ , the EWMA puts all of its weight in the most recent observations. If 0→λ , then 
the most recent observations are assigned a small weight and the weight attached to 
previous observations only slightly decreases with time. 

The upper (UCL) and lower (LCL) control limits are given by 
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The EWMA chart provides an out-of-control signal if the realisation of WX,t is larger 
then UCLt or smaller than LCLt. L is a constant with L > 0. In the present study the val-
ues of L and λ varied in order to determine the optimal performance of the control chart. 

Neural networks (NN)  

The Multilayer perceptron which was used in the present study is the most widely used, 
studied and applied NN. In these networks there is a set of input nodes (input layers), 
whose only role is to feed input patterns into the rest of the network. Following the input 
layer, and before the output layer, there are one or more intermediate layers of units. 
These units are called hidden units because they have no direct connection to the outside 
environment neither input nor output. In the feedforward networks there are no connec-
tions leading from a unit to units in a previous layer, nor to other units in the same layer 
nor to units more than one layer ahead. The output of every unit is connected only to the 
units in the next layer. Every unit is associated with a nonlinear function called the acti-
vation function. A commonly used form of nonlinearity is a sigmoid nonlinearity defined 
by the hyperbolic tangent. More details about the construction of NN are found in 
[Ha99]. Once the network weights and biases has been initialised the network has to be 
trained. In our study the training process followed a modified Levenberg-Marquardt 
algorithm (Bayesian regularisation). The backpropagation algorithm was stopped when 
the absolute rate of change in the averaged squared error per iteration was sufficiently 
small. Finally, by comparing convergence, consistency and classification accuracy, a 
multilayer perceptron with one hidden layer was adopted. The input layer contained two 
nodes (activity, days since last oestrus), the hidden layer consisted of five nodes and the 
output layer had only one node (oestrus event yes/no).  

Evaluation and validation 

The classification performance of the EWMA chart and NN can be tested by analysing 
the number of correctly and incorrectly classified observations: true positive (TP), false 
negative (FN), false positive (FP) and true negative (TN). The classification performance 
is expressed by the sensitivity, specificity and error rate. The sensitivity (TP(TP+FN)-1) 
measures the number of correctly detected oestrus to all oestrus events. The specificity 
(TN(TN+FP)-1) denotes the number of false oestrus warnings in relation to number of 
true negative observations. The error rate (FP(FP+TP) 1) describes the number of false 
oestrus warnings in proportion to the number of detected oestrus alerts.  
Multifold cross validation was used to evaluate the ability of the trained NN to accu-
rately classify oestrus events. The available set on N (N=10,386) examples was divided 
into M=5 subsets. A NN model was trained on all the subsets, except for one, and the 
performance of the model was measured by testing it on the subset left out. The same 
training and validation subsets were utilised to derive the EWMA chart. The perform-
ance of the models was assessed by averaging sensitivity, specificity and error rate under 
training or validation over all trials of the experiment.  
Preprocessing of data, deriving the EWMA control chart and building the neural network 
with training and validation was performed with MATLAB Version 7.0.1.24074 [Ma04]. 
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3 Results and Discussion 

Using the NN with two input nodes (activity, period since last oestrus) for oestrus detec-
tion, sensitivity was 78.7% and error rate was 5.1% with the training sets (Table 1). 
Specificity was always high due to the high number of true negative results. The per-
formance of the model was assessed by averaging the classification parameter under 
validation. The sensitivity remained more or less constant (77.5%), but the number of 
false oestrus warnings in relation to the number of detected oestrus increased (9.1%).  
These results confirmed that the model provided an adequate fit and generalised well. 
Compared to the univariate EWMA control chart with λ = 0.6 and L ranging from 2.5 to 
3, sensitivity was only slightly enhanced, but an obvious improvement was found in the 
reduced number of false positive oestrus warnings. 
 Training sets1) Validation sets1)

 Sensitivity Specificity Error rate Sensitivity Specificity Error rate 
Neural network 78.7 99.5 5.1 77.5 99.6 9.1 
EWMA cahrt2)

    L = 3.0 
    L = 2.5 

 
71.3 
77.3 

 
99.3 
99.2 

 
17.1 
18.1 

 
66.9 
70.6 

 
99.3 
99.1 

 
18.8 
20.9 

1)  means of replications, M = 5 subsets;  2)  λ = 0.60 
Table 1: Classification performance (%) of the neural network using training and validation 

Using the same data set [Fi03] also observed a strong improvement in the error rate if the 
trait activity and period since last oestrus were combined by a fuzzy logic model (seni-
tivity = 87.9%; error rate = 12.5%). If the input of the NN model was restricted to the 
trait activity, the differences between the EWMA chart and the NN model were small 
(sensitivity = 76.7%, error rate = 15.2% using the training set; sensitivity = 75.3%, error 
rate = 17.8% using the validation set) indicating the benefit of previous oestrus detec-
tion. 

4 Conclusion 

A neural network model was developed for oestrus detection using the activity meas-
urements and the period since last oestrus. A feedforward three-layer perceptron pro-
vided an adequate fit and generalised well. Oestrus detection by a conventional univari-
ate EWMA control chart was less successful. 
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